Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
نویسندگان
چکیده
Microorganisms play a significant role in bioremediation of heavy metal contaminated soil and wastewater. In this study, heavy metal resistant fungi and bacteria were isolated from the soil samples of an electroplating industry, and the bioaccumulations of Cr(VI) and Ni(II) by these isolates were characterized to evaluate their applicability for heavy metal removal from industrial wastewaters. The optimum pH and temperature conditions for both the growth and heavy metal removal were determined for each isolate. The optimal pH for fungal isolates was lower (5-5.2) than that for bacterial isolates (7). The observed effect(s) of pH was attributable mainly to organism-specific physiology because in all the tested cases the cellular growth positively correlated with heavy metal removal. Batch and tolerance experiments provided information for solid retention time (SRT) design and the lethal tolerance limits for the isolated microorganisms. Experimental results indicated that expanded SRTs (stationary phase) can be recommended while using the fungal and bacterial Cr-resistant isolates for removing chromium. In the case of Ni-resistant bacterial isolate, a non-expanded SRT was recommended for designing continuous-flow completely stirred (CFCS) bioreactor so that a mid-log phase of cellular growth can be kept during the bioaccumulation process. The tolerance data with a high range of heavy metal concentrations revealed the Cr-resistant isolates, especially the fungal one, could tolerate chromium toxicity at up to 10,000 mg L(-1) chromium. Result indicates the applicability of the isolated Micrococcus sp. and Aspergillus sp. for the removal of chromium and nickel from industrial wastewater.
منابع مشابه
Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil.
The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25-150 mgl(-1)) of heavy met...
متن کاملBiosorption of Lead and Copper by Heavy Metal Resistance Bacterium using Fourier Transform Infrared Spectrophotometer (FT IR)
Abstract Background and Objectives: Contamination of environment to lead and copper is rising due to human activities. One of the best methods to remove heavy metals from the environment is bacterial remediation. This study aimed to isolate bacteria and investigate the mechanism of lead and copper bioremediation. Material and Methods: Heavy metal resistant bacteria were isolated from contaminat...
متن کاملHeavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns
The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potentia...
متن کاملIsolation and Identification of Heavy Metal Resistant Bacteria from Industrial Wastewaters in Guilan Province
Heavy metal pollution by natural factors is a world-wide phenomenon. Release of large quantities of heavy metals without handling proper processes that could decrease the concentration of such a material is a hassle that makes strains resistant to these heavy metals apart from entering into human food chain. In this research, wastewater of four firms in Guilan province such as Foolad, Risandegi...
متن کاملIsolation and Identification of Heavy Metal Resistant Bacteria from Industrial Wastewaters in Guilan Province
Heavy metal pollution by natural factors is a world-wide phenomenon. Release of large quantities of heavy metals without handling proper processes that could decrease the concentration of such a material is a hassle that makes strains resistant to these heavy metals apart from entering into human food chain. In this research, wastewater of four firms in Guilan province such as Foolad, Risandegi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 146 1-2 شماره
صفحات -
تاریخ انتشار 2007